BCA BE Seminar 2022 Buildings: What Can Go Wrong

Lessons Learnt from Bridge Failures

Er. ZHAO ZHE Senior Engineer Building and Construction Authority

Outline

- 1. Collapse of the Florida International University (FIU) pedestrian bridge in Miami, U.S. 2018
- 2. Collapse of a viaduct under construction in Singapore, 2017 (BE book Chapter 6.6)
- 3. Lessons Learnt

1. Collapse of The FIU Pedestrian Bridge

The Incident

- 15 March 2018, Miami, Florida, U.S.
- 174 foot long (53m), 950 ton, concrete pedestrian overhead bridge
- 5 workers working on top of the roof, 8 vehicles stopped below,
- 6 victims died, 8 people injured

Sources of Information

- Investigation report by U.S. Department of Labor, Occupational Safety and Health Administration (OSHA) [https://www.osha.gov/sites/default/files/2019-12/2019_r_03.pdf]
- Investigation report by U.S. National Transportation Safety Board (NTSB) [https://www.ntsb.gov/investigations/AccidentReports/Reports/HAR1902.pdf]
- Drawings that are publicly available from Florida Department of Transportation (FDOT) website [https://cdn2.fdot.gov/fiu/13-Denney-Pate-signed-and-sealed-FIU-bridge-construction-plans.pdf]

Note:

• Please refer to the reports in the links listed above for the relevant drawings and photos pertaining to this collapse incident.

Structural System

- The bridge is not cable-stayed. The steel pipes are not load-bearing elements, but architectural features which can only enhance the dynamic performance of the bridge.
- In elevation, the main bridge structure is in the form of a truss.
- In section, the bridge structure is in the form of an I-section. the Canopy and Deck are acting as the top and bottom flange, and the concrete truss forms the web.
- At the time of the incident, the collapsed span was supported at the two abutment walls.
- The collapse was initiated from North end support

Structural System

- At the end support, the deck is thickened to form a diaphragm to transfer the load to abutment wall via bearing
- The canopy and deck are pre-stressed along the bridge
- The diagonal struts are also pre-stressed elements using PT bars.
- The two diagonal member 2 & 11 are the last diagonal member joining at the end diaphragm.
- There were 5 workers working on top of the canopy near the north end support. They were carrying out PT works to Diagonal 11.
- Deck slabs are also pre-stressed in transverse direction

Construction Method

Accelerated Bridge Construction (ABC)

- The construction method adopted is Accelerated Bridge Construction (ABC).
- The bridge span was pre-cast at the road side, in stages following a sequence of Deck, Struts, and Canopy, followed by post-tensioning of the cables and PT bars.
- The entire span will then be transferred using the self-propelled modular transporter (SPMT) to its position for erection.

No Redundancy

Build

- OSHA Assessment:
 - The structure of the main span was determinate, and was non-redundant... if one diagonal failed, the entire bridge would collapse...
 - Concrete trusses are rare but they do exist. Steel trusses are preferred because steel is ductile and could cope better with incidental flexural forces...

Inadequate Interface Shear Transfer

4 - 750 @ 1'-0"

> - 7503 (TYP.)

Jiagonal

- OSHA Assessment:
 - The interface was not "intentionally roughened"
 - Other than the rebar in vertical member 12, rebar crossing CJ did not have adequate embedment.

Inadequate Tension Transfer at Joint

- OSHA Assessment:
 - there is no mechanism to transfer the tensile force from the diagonal to the deck...

from PT

- the PT tendons are placed away from the junction...
- at the 45 degrees line where the compression and tension areas meet, cracks would appear..

Build

Inadequate Tension Transfer at Joint

- OSHA Assessment:
 - Diaphragm II experienced a <u>blow-out</u> of concrete at the junction of diagonal 11 and column 12...

Inadequate Peer Review

- According to OSHA Report:
 - The peer review fees and time to conduct the review were rather constrained...
 - Due to the limited resources, the peer reviewer created a scope of work without checking the intermediate stage... (check permanent condition only)
 - The entire review was conducted by one engineer without any assistance from others...

*Self-Propelled Modular Transporter

10 Mar 2018

- Bridge in position
- Destressing PT bars
- Cracks appear at diaphragm

12 Mar 2018

• PT Specialist and Builder informed the Engineer

13 Mar 2018

- Engineer responded with "no safety concern"
- Engineer advised the Builder to re-tension PT bars in diagonal 2 & 11

Shear along the interface	Demand Capacity (kips) (kips)		Ratio
Bef. Re-tension PT bars	1,106	906	1.22
Aft. Re-tension PT bars	1,579	1,086	1.45

Actions should have been taken

- OSHA Advised:
 - Rescind the instructions to re-tension the PT bars in diagonal 11.
 - Recommend closing the Street, and shore the truss.
 - Determine the cause of the cracks.
 - Perform re-evaluation of its design with an independent peer review.
 - Carry out remedial measures.

OSHA Concluding Remarks on Project Parties

Role	In SG Context	Key Conclusions
General contractor (Design-Build)	(Builder)	 failed to exercise its own independent professional judgement to close the traffic on SW 8th Street
Structural Engineer of Record (EOR)	(QP)	 failed to recognise that the bridge was in danger of collapsing when it inspected it hours before the collapse structural design deficiencies
Independent peer reviewer	(AC)	 did not check the structural integrity of the bridge under different construction stages
Construction Engineer and Inspector (CEI)	(Supervision Team)	 failed to classify the cracks, which were structural did not recommend to close the street and shore the bridge

2. Collapse of A Viaduct Under Construction

The Incident

- 14 July 2017, Singapore
- 43.5m span
- During concreting of the deck slab
- 1 worker was killed, 10 others injured

Deficiencies in Design – Temporary Corbel

Approach adopted in QP's design

• Overestimated the width and depth of corbel

Approach recommended in textbooks

- Reinforced Concrete Design to BS 8110 Simply Explained (A.H. Allen)
- Reinforced Concrete: Analysis and Design (S.S. Ray)

Deficiencies in Design – Temporary Corbel

Stage/Load Type	Check	Load Factor & Material Fcator	As Provided (mm2)	As Required (mm²)	CDR	
Launch (Girder Self Weight Only)	EC Compliance (Factored)	1.35 (DL), <u>γs=1.15, γc=1.5</u>	1810	2815	0.64	
	No Load or Material Factor	-	1810	1773	1.02	Any signs of distress?
At Collapse (Self weight+Const'n Live Load)	No Load or Material Factor	-	1810	2783	0.65	

<u>PLAN</u>

Assessment Result

- With the self-weight of the precast U-girder, the corbel was barely adequate if we remove all the load and material factors
- The corbel did not have enough capacity to support additional load from the casting of the deck slab

Cracks Observed

• Cracks on corbels were observed at adjacent piers before the construction of deck slab at the collapsed span.

Remedial Measures

• The measures prescribed by the QP could not arrest the design deficiency of the corbels.

1. Reducing the area of deck slab from 75% to 50% of span length

2. Adding shoring below the crosshead and corbel

3. Lessons Learnt

- Provide redundancy and robustness, esp. for complex structure/construction.
- Pay extra attention to load transfer mechanism and provide proper detailing at critical joints. Bespoke design and details are required; and not to use plain standard details.
- Take structural cracks seriously, and provide precautionary measures promptly.
- Works should not continue until the cause of cracks is determined and the required rectification is completed.

Final Remarks

- Bridges are often long-span and post-tensioned structures. Such structure requires specialist experience and knowledge in design, fabrication and construction for safe execution of the project.
- Bridge structures has less redundancy in nature, and could be less robust during the construction stage.
- Everyone should be more vigilant in design, checking, and execution of bridge construction.
- Structural safety should not be compromised under cost and time pressures.

